Advanced Algorithm

Jialin Zhang
zhangjialin@ict.ac.cn
Institute of Computing Technology, Chinese Academy of Sciences

April 11, 2019

Lecture 5: Permutation Routing Problem

Permutation Routing Problem

- Randomized Algorithm - Chapter 4.2, P74
- Routing Problem: Given graph $G=(V, E)$, every node i wants to send one packet to some other node $d(i)$. Every round, every edge direction can transfer at most one packet. How many rounds?
- Permutation Routing Problem: $\{d(i)\}$ is a permutation.
- Oblivious algorithm: the route from node i to $d(i)$ depends on (i,d(i)) only.

Theorem

For any deterministic oblivious permutation routing algorithm on a graph of N nodes each of out-degree d, there is an instance of permutation routing requiring $\Omega(\sqrt{N / d})$ steps.

- Ref: "Routing, merging and sorting on parallel models of computation" by A. Borodin, J.E. Hopcroft. (1985)

Permutation Routing Problem

We only consider n-dimension Boolean hypercube in this lecture. $N=2^{n}$ nodes.
(1) First attempt: deterministic algorithm

- Bit fixing algorithm;
- Consider permutation: $(x, y) \rightarrow(y, x)$ where x, y are $\frac{n}{2}$-bit strings.
(2) Second attempt: randomized bit fixing algorithm
(3) Third attempt: two-phase randomized bit fixing algorithm, by L. Valiant(1981)

Homework

(1) In randomized bit fixing algorithm, consider the permutation $(x, y) \rightarrow(y, x)$ where x, y are $\frac{n}{2}$-bit strings. Prove its running time is $2^{\Omega(n)}$ with high probability $(1-o(1))$.
(2) In Valiant two-phase algorithm, prove $\operatorname{Pr}(\exists x, \operatorname{delay}(x)>c n)=o(1)$.

Lecture 5.2: Probabilistic Method

Ramsey number

- Ref. Probabilistic Method - Chapter 1
- Ramsey number $R(m, n)$: smallest number k such that in any 2-coloring of the edges of a complete graph on k vertices by red and blue, there either is a red K_{n} or a blue K_{m}. We are interested in the lower bound of $R(m, n)$.
- $R(2,2)=2, R(3,3)=6$.
- $R(4,5)=25(1995), 43 \leq R(5,5) \leq 49$.
- Constructive proof: $R(m, n) \geq(m-1)(n-1)+1$.
- (Paul Erdös) $R(n, n) \geq 2^{\frac{n}{2}}$

Probabilistic Method

- Goal: we want to prove the existence of some kind of structure.
- We construct some kind of random process.
- Prove the probability of the event that this structure exists is strictly greater than 0 .

Max Cut problem

- Ref. Randomized Algorithm - Chapter 5.1, Page 103.
- NP-hard problem
- For any undirected graph $G(V, E)$ with n vertices and m edges, there is a partition of the vertex set V into two sets A and B such that $|\{(u, v) \in E \mid u \in A, v \in B\}| \geq m / 2$.
- Proof?
- Construction?

Max-SAT problem

- Ref. Randomized Algorithm - Chapter 5.1, Page 103.
- NP-hard problem
- For any set of m clauses, there is a truth assignment for the variables that satisfies at least $m / 2$ clauses.
- Proof?
- Construction?

Homework

Randomized Algorithm - Problem 5.3, Page 124

